Datawhale干貨
(資料圖片)
作者:平凡@知乎,諾桑比亞大學(xué),在讀博士
今天晚上,花了一點兒時間看了兩篇文章:
《Emergent Abilities of Large Language Models》[1]
《PROGRESS MEASURES FOR GROKKING VIA MECHANISTIC INTERPRETABILITY》[2]
這兩篇講的都是emergent behavior,即涌現(xiàn)現(xiàn)象。
大規(guī)模神經(jīng)網(wǎng)絡(luò)下的涌現(xiàn)現(xiàn)象在機器學(xué)習(xí)中使用大規(guī)模神經(jīng)網(wǎng)絡(luò)時,由于增加了參數(shù)數(shù)量、訓(xùn)練數(shù)據(jù)或訓(xùn)練步驟等因素,出現(xiàn)了定性上的新能力和性質(zhì),這些能力和性質(zhì)在小規(guī)模神經(jīng)網(wǎng)絡(luò)中往往是不存在的。
第一篇文章舉了這個例子,每個圖都可以理解為一個任務(wù),橫軸是神經(jīng)網(wǎng)絡(luò)的規(guī)模,而縱軸是準確率,可以理解為模型的性能。
我們拿圖一來看,在10的22次方前,這些模型基本上的性能基本上都很穩(wěn)定在0附近,而在10的22以后,突然在10的24次方上獲得了很大的性能提升,在其他的幾個任務(wù)上都表現(xiàn)出類似的特征。
意想不到的效果第二篇文章更是有趣,我直接把推特一位博主的評論引用在這里:
作者發(fā)現(xiàn),當(dāng)我們訓(xùn)練用網(wǎng)絡(luò)計算同余加法 a+b = ? (mod c) 時,網(wǎng)絡(luò)在某個時間突然獲得了 100% 準確率。分析發(fā)現(xiàn),神經(jīng)網(wǎng)絡(luò)實際上“頓悟”了使用傅立葉變換來計算同余加法!這個算法可以證明是正確的, 反人類直覺的。
從這倆例子里面我的感受是,只要數(shù)據(jù)量足夠且真實,且模型沒有硬錯誤的前提下,不斷的訓(xùn)練說不定真的能夠產(chǎn)生一些意想不到的效果。
還有就是我覺得人類現(xiàn)在積累的知識并不少,但是系統(tǒng)的少,零星的多,如果類似ChatGPT這樣的大模型可以拿所有的人類已有知識進行不斷學(xué)習(xí)的話,我覺得有很大概率會讓它涌現(xiàn)出意想不到的能力。
甚至可能把人類的生產(chǎn)力解放提前很多。
參考
1.https://arxiv.org/pdf/2206.07682.pdf2.https://arxiv.org/pdf/2301.05217.pdf關(guān)鍵詞:
凡注有"實況網(wǎng)-重新發(fā)現(xiàn)生活"或電頭為"實況網(wǎng)-重新發(fā)現(xiàn)生活"的稿件,均為實況網(wǎng)-重新發(fā)現(xiàn)生活獨家版權(quán)所有,未經(jīng)許可不得轉(zhuǎn)載或鏡像;授權(quán)轉(zhuǎn)載必須注明來源為"實況網(wǎng)-重新發(fā)現(xiàn)生活",并保留"實況網(wǎng)-重新發(fā)現(xiàn)生活"的電頭。
熱點
- 大語言模型中的涌現(xiàn)現(xiàn)象是不是偽科學(xué)?-世界快看點
- 世界視訊!【財經(jīng)分析】養(yǎng)老金融迎發(fā)展機遇期 保險行業(yè)大有可為
- 蘭陵縣做好審批“加減法” 讓政務(wù)服務(wù)更便捷
- 中方駁斥:無中生有、信口雌黃、惡意詆毀!-熱門看點
- 世界觀焦點:Raychell&夏芽 2020年特別對談翻譯
- 世界熱文:多名嫌犯被游行示眾?西寧警方回應(yīng) 不存在“游街示眾”的行為!
- 贏越人生年金保險怎么樣?在哪里買?
- 寶寶肌張力高的3大表現(xiàn)_熟睡后肌張力高的表現(xiàn)|當(dāng)前資訊
- 景德鎮(zhèn)古陶瓷基因庫“擴容” 環(huán)球觀察
- 22歲女孩拿快遞失聯(lián)已第9天 她是家里頂梁柱!此前地毯式搜尋無果!-環(huán)球今熱點