Datawhale干貨
作者:平凡@知乎,諾桑比亞大學,在讀博士
(資料圖)
今天晚上,花了一點兒時間看了兩篇文章:
《Emergent Abilities of Large Language Models》[1]
《PROGRESS MEASURES FOR GROKKING VIA MECHANISTIC INTERPRETABILITY》[2]
這兩篇講的都是emergent behavior,即涌現(xiàn)現(xiàn)象。
大規(guī)模神經網(wǎng)絡下的涌現(xiàn)現(xiàn)象在機器學習中使用大規(guī)模神經網(wǎng)絡時,由于增加了參數(shù)數(shù)量、訓練數(shù)據(jù)或訓練步驟等因素,出現(xiàn)了定性上的新能力和性質,這些能力和性質在小規(guī)模神經網(wǎng)絡中往往是不存在的。
第一篇文章舉了這個例子,每個圖都可以理解為一個任務,橫軸是神經網(wǎng)絡的規(guī)模,而縱軸是準確率,可以理解為模型的性能。
我們拿圖一來看,在10的22次方前,這些模型基本上的性能基本上都很穩(wěn)定在0附近,而在10的22以后,突然在10的24次方上獲得了很大的性能提升,在其他的幾個任務上都表現(xiàn)出類似的特征。
意想不到的效果第二篇文章更是有趣,我直接把推特一位博主的評論引用在這里:
作者發(fā)現(xiàn),當我們訓練用網(wǎng)絡計算同余加法 a+b = ? (mod c) 時,網(wǎng)絡在某個時間突然獲得了 100% 準確率。分析發(fā)現(xiàn),神經網(wǎng)絡實際上“頓悟”了使用傅立葉變換來計算同余加法!這個算法可以證明是正確的, 反人類直覺的。
從這倆例子里面我的感受是,只要數(shù)據(jù)量足夠且真實,且模型沒有硬錯誤的前提下,不斷的訓練說不定真的能夠產生一些意想不到的效果。
還有就是我覺得人類現(xiàn)在積累的知識并不少,但是系統(tǒng)的少,零星的多,如果類似ChatGPT這樣的大模型可以拿所有的人類已有知識進行不斷學習的話,我覺得有很大概率會讓它涌現(xiàn)出意想不到的能力。
甚至可能把人類的生產力解放提前很多。
參考
1.https://arxiv.org/pdf/2206.07682.pdf2.https://arxiv.org/pdf/2301.05217.pdf關鍵詞:
凡注有"實況網(wǎng)-重新發(fā)現(xiàn)生活"或電頭為"實況網(wǎng)-重新發(fā)現(xiàn)生活"的稿件,均為實況網(wǎng)-重新發(fā)現(xiàn)生活獨家版權所有,未經許可不得轉載或鏡像;授權轉載必須注明來源為"實況網(wǎng)-重新發(fā)現(xiàn)生活",并保留"實況網(wǎng)-重新發(fā)現(xiàn)生活"的電頭。
熱點
- 今天打開個稅APP,我直接人麻了!
- 2023高考今日落幕,多地公布志愿填報時間
- 恐怖《午夜迷途》現(xiàn)身全國院線電影推介會, “翁丁原始部落”引發(fā)群體震顫|環(huán)球新消息
- 環(huán)球觀速訊丨高校食堂“鼠頭鴨脖事件”背后:10萬能拿下一個檔口?
- 6月30日之前一定要去看看銀河L7,8重大禮錯過就沒了!
- 怎么洗棗子(怎么洗棗子最干凈) 天天資訊
- 高考結束,多地景區(qū)宣布全國高考考生憑準考證可免費游覽
- 環(huán)球動態(tài):中方駁斥:無中生有、信口雌黃、惡意詆毀!
- 在鐵路12306買臥鋪票也可以在線選鋪位了!手把手教你怎么操作
- 天天即時看!中超積分榜:海港領跑三鎮(zhèn)僅第8 大連人倒數(shù)第一